
IBM eServer Cryptographic Coprocessor Security Module

Model 4764–001

Security Policy

IBM
Advanced Cryptographic Hardware Development

April 19, 2006

Policy information: $Revision: 1.92 $

April 19, 2006 2

Contents

1 Scope of Document 3

2 Applicable Documents 6

3 Secure Coprocessor Overview 7

3.1 Architecture and Resources . 8

3.2 Included Algorithms . 11

4 Cryptographic Module Security Level 12

5 Ports and Interfaces 13

6 Self-tests 13

7 Roles and Services 15

7.1 Roles . 15

7.2 Operations . 18

7.3 Inbound Authentication . 19

7.4 Outbound Authentication . 19

7.5 CSP . 19

7.6 Queries and Commands . 21

7.7 Overall Security Goals . 24

8 Security Rules 26

9 FIPS-Related Definitions 27

10 Module Configuration for FIPS 140-2 Compliance 28

10.1 Miniboot . 28

10.2 Layers 2 and 3 . 28

10.3 Usage of non-Approved algorithms or modes of operation . 29

10.4 Determining Mode of Operation . 29

11 Module Officer/User Guidance 30

11.1 Physical Security Inspection/Testing Recommendations . 30

11.2 Module initialization and delivery . 31

11.3 Miscellaneous . 31

12 Glossary 32

April 19, 2006 3

1 Scope of Document

This document describes services that the IBM eServer Cryptographic Coprocessor (4764–001; Hardware P/Ns: 12R6536,
12R8241, 12R8561; Firmware version 1.25) (“the module”) with Miniboot software resident in ROM and flash, pro-
vides to a population of security officers, users, and the security policy governing access to those services.

The document is built on the foundations of the previously FIPS-validated IBM 4758 Model 002 (validation certifi-
cate 116), reflecting the implementation differences between the 4758 and variants of the 4764–001. Differences
between members of the 4764 family are also described in the following pages.

Background of Family The module is a programmable secure coprocessor. It consists of:

• base hardware;

• embedded firmware that is not visible to the outside;

• Miniboot software, which controls the security and configuration of the device (the externally visible part of
card firmware);

• higher system software and application layers

Note that higher layers of software and application (Layers 2 and 3) are not included in the current validation.

The combination of the hardware and Miniboot comprise the security foundation of the module. What a particular
module ends up doing is controlled by higher software layers. However, what goes into these layers, and under what
circumstances their secrets are preserved or destroyed, is controlled by Miniboot layers.

The validation of this basic platform establishes that, no matter what is loaded into Layer 2 and Layer 3, this platform
is secure.

• Miniboot correctly configures and identifies what’s in these layers, in accordance with our policy, each time
Miniboot runs.

• If an entity uses an outbound (Layer 1) private key which Miniboot validated to belong to an untampered card
in a specified application configuration, then either:

– that entity is that application configuration on that untampered card,

– or that application configuration on that card gave away its key.

Predecessors: the 4758 family The first member of the 4758 card family, the original “Model 1” was introduced
in August 1997. In November 1998, the foundational hardware and software received the world’s first FIPS 140-1
Security Level 4 validation (validation certificate 35). Subsequently, the Model 13 was introduced, as a variant of
the same Model 1 device; the Model 13 received a Security Level 3 FIPS 140-1 validation (validation certificate 81).

In 2000, IBM introduced two additional members of this family: the Model 2, and the Model 23. These devices consist
of the follow-on “Model 2” device, with differing levels of physical security. Firmware functionality has been extended
with outbound authentication, the capability of a card to identify itself to external parties. Table 1 summarizes these
variations; base firmware has been validated at Security Level 4 and 3, respectively (validation certificates 116 and
117).

The 4764 (PCIXCC) variants The IBM eServer Cryptographic Coprocessor, introduced in 2003, is functionally
very similar to the Model 2 4758 with enhanced infrastructure capabilities (in terms of performance, enhanced
capabilities of its PCI-X interface, and RAS features). In other terms, just as other members of the 4764 family,
the 1.16 firmware (Segment 0–1) is functionally equivalent to a Model 2 4758. Subsequent releases in the 4764

April 19, 2006 4

Model Hardware Software Physical Sec. Overall Certificate

4758 family

4758 Model 1 PCI Legacy Miniboot Level 4 Level 4 Nr. 35
4758 Model 13 PCI Legacy Miniboot Level 3 Level 3 Nr. 81

4758 Model 2 PCI 4758 Miniboot Level 4 Level 4 Nr. 116
4758 Model 23 PCI 4758 Miniboot Level 3 Level 3 Nr. 117

4764 family

4764–001,

hw. 16R0911, fw. 1.16

PCI-X 4758 Miniboot compatible Level 4 Level 4 Nr. 524

4764–001,

hw. 12R6536, fw. 1.25

PCI-X 4758 Miniboot compatible
+FPGA update capability

Level 4 Level 4

4764–001,

hw. 12R8241, fw. 1.25

PCI-X 4758 Miniboot compatible
+FPGA update capability

Level 4 Level 4

4764–001,

hw. 12R8561, fw. 1.25

PCI-X 4758 Miniboot compatible
+FPGA update capability

Level 4 Level 4

Table 1: Summary of 4758/4764 product family

family, unless otherwise noted, remain functionally identical to the original 4764–001 from a firmware perspective.
The PCIXCC name indicates that these cards require a PCI-X host.

This Security Policy corresponds to the functionality of Segments 0 and 1 of the follow-on coprocessor of the
IBM 4758/4764 family, the IBM eServer Cryptographic Coprocessor (specifically model 4764–001, the given hard-
ware and firmware revisions, with Level 4 overall security).

Following the original, zSeries-specific release of the 4764–001 in 2003, a revised card version, with hardware part
number 12R6536 and firmware 1.25, was released in the second half of 2004. This updated version was certified
exclusively for use in IBM iSeries servers.

Different in several minor details, the most important new feature of the 1.25 firmware is software support of FPGA
code field updates. The FPGA update capability is discussed in detail later in this document. Logically, the FPGA
programming file shares protection with the rest of card firmware. All subsequent firmware releases enable repro-
gramming of FPGA contents.

A minor hardware revision was introduced at the end of 2004. This updated version (part number 12R8241) was
certified for use in multiple server platforms.

In the first half of 2005, new hardware has been phased in, with enhancements to the module potting material
(security module hardware part number 12R8561). (This hardware upgrade is part of the move to lead and mercury-
free production.) With only material improvements, this version stayed binary compatible with the earlier release. In
fact, these cards retained all software from the previous releases (i.e., firmware 1.25).

Follow-on Hardware The module hardware offers significant performance improvements over original 4758 hard-
ware:

• The module CPU is now a 266 MHz PowerPC.

• Internal battery-backed SRAM offers 128 KB ECC-protected storage (with 127 KB usable)

• Hardware support of the Advanced Encryption Standard (AES) algorithm (128 to 256 bit key sizes)

• Vastly improved modular math engine (enhancements to performance, features, and reliability)

• Improved TDES engine (single-DES is still supported for legacy applications)

• Hardware support for SHA-1 and MD5 hashing

April 19, 2006 5

• Overall improvements in error-detection and correction capabilities in hardware or base firmware.

Outbound Authentication Miniboot completes the original security architecture by including full outbound au-
thentication support, enabling applications at runtime to authenticate themselves, their software configuration and
the fact they are executing on untampered hardware.

With outbound authentication, secure coprocessor applications become first-class cryptographic entities empowered
to participate in a full range of protocols: from signing messages, to receiving encrypted messages, to exchanging
keys with programs running on the other side of the Internet.

4764 This document describes the policy for module with Level 4 physical security.

The terms “4764” and variants of the full 4764–001 designation are used interchangeably in this document, unless
otherwise noted. Differences between 4764 models are specifically highlighted, where applicable, if relevant.

Note that the 4764–001 designation, in IBM terminology, is a machine type and model number, together
generally referred to as model. The same module may be assigned different feature codes in specific
configurations, especially if embedded in another subsystem (such as I/O boards in zSeries mainframes).
Feature codes containing the same card configuration may also be different in different server platforms.

Independent of the actual feature code in the end configuration, the machine type of the secure module,
4764–001, does not change. This statement covers all members of the 4764 family.

As described in this document, the module does not need to trust its PCI-X host, therefore it is prudent
and reasonable to use the card-specific 4764–001 machine type to identify the module. In certain cases,
references may still be made to the behavior or PCI-X properties of the host system, irrespective of the
actual platform. Such distinction is necessary, for example, where discussing connectivity tests, which
require host interaction without trusting the host (beyond its capability to drive its PCI-X bus).

April 19, 2006 6

2 Applicable Documents

• The FIPS 140-2 standard, the Derived Test Requirements, and on-line implementation guidelines

• DES: FIPS PUB 46, FIPS PUB 74, and FIPS PUB 81

• AES: FIPS PUB 197

• SHA-1: FIPS PUB 180-2

• DSS: FIPS PUB 186-2

• MD5: RFC 1321, “The MD5 Message-Digest Algorithm”

• Pseudorandom Number Generation: Appendix 3 of FIPS PUB 186-2.

• Digital Signature Scheme Giving Message Recovery: ISO/IEC 9796

• the TDES standard, ANSI X9.52, Triple Data Encryption Algorithm Modes Of Operation

• the ANSI X9.31 standard (referenced in the context of RSA signatures and key generation)

This document is based on the security policy of the IBM 4758–002:
IBM 4758 Model 2 Security Policy,
http://csrc.nist.gov/cryptval/140-1/140sp/140sp116.pdf (accessed 2004.09.02).

April 19, 2006 7

3 Secure Coprocessor Overview

A multi-chip embedded product, the module is intended to be a high-end secure coprocessor: a device—with a
general-purpose computation environment and high-performance crypto support—that executes software and retains
secrets, despite most foreseeable physical or logical attack. Customers can use this secure platform as a foundation
for their own secure applications, which may range from crypto APIs to digital media distribution.

Miniboot The foundational Miniboot code helps achieve this security goal by permitting software (including updates
to Miniboot itself)

• to load and execute safely,

• while allowing participants to authenticate that they are interacting with a specific untampered device in a
specific software configuration.

Authenticating the Configuration Verifying that one is interacting with an untampered device operating the
correct software is necessary for both classes of applications:

• Standalone devices, such as cryptographic accelerators. Research results show that if a user cannot verify
that their crypto box is both untampered, and operating the intended software, then their entire cryptographic
operation is threatened. For example, a hostile, card-resident adversary can replace the key generation algorithm
with one that appears to behave completely correctly and “randomly”—except the adversary can learn all the
keys.

• Distributed applications. Many e-commerce scenarios require that one party be able to trust computation
that occurs at a remote site, which is under the physical control of a party who may benefit from tampering
with this computation. See Fig. 1.

The module provides full outbound authentication (“OA”) for all layers of software: a card-resident, non-exportable
private key can sign everything output from the module. OA features are integral to Segments 1 and 2; Segment 3
entities (applications) may access OA services through an exposed Segment 2 interface.

Maximum Flexibility, Minimal Trust We provide these security properties while also accommodating these con-
straints:

• no trusted couriers or on-site security officers are needed

• IBM maintains no database of device secrets

• IBM does need to see application software

• rewriteable software can fail, or behave with malice, without compromising the integrity of lower layers

• IBM (or other software developers) have no “backdoor access” to customer’s on-card secrets

Secure Platform Our goal is to produce a secure platform on which developers (including IBM) can build secure
applications.

Our module, for validation, consists of the IBM eServer Cryptographic Coprocessor hardware, along with the foun-
dational Miniboot software.

By obtaining FIPS 140-2 validation for our hardware and bootstrap/configuration control software (Layer 0 and
Layer 1, in Fig. 3), we make it easy for developers to build and deploy secure applications. Obtaining FIPS 140-2

April 19, 2006 8

storage

software

CPU

IBM 4764
Secure Coprocessor

software

CPUstorage

IBM 4764
Secure Coprocessor

Figure 1: Our goal is to enable users, who have never met, to buy our hardware, download software from their chosen
security officers, then interact securely—each able to verify that they are talking to the real thing, doing the right
thing.

validation for such applications would require additional documentation and a separate validation for software built
for our module’s environment, having it evaluated for secure operation specifically within our module. (Software
evaluated in this environment would inherit the physical protection afforded by our Level 4 enclosure.)

Validating this platform at Level 4 customers the flexibility to design to any FIPS 140-2 Security Level of any code
built on top of this module.

More Information For more details on the security architecture of the IBM 4758/4764 family of devices, see:

• S. W. Smith, S. H. Weingart. “Building a High-Performance,Programmable Secure Coprocessor.” Computer
Networks, Special Issue on Network Security. 31: 831-860. April 1999.

(The document is available in softcopy on the IBM Security web site.)

3.1 Architecture and Resources

The module incorporates state-of-the-art hardware security and cryptography technology, including:

• modular exponentiation hardware

• AES hardware

• TDES hardware, optionally usable to perform DES for compatibility with legacy applications

• SHA-1 hardware

• MD5 hardware

• protective,tamper-respondent matrix

• tamper detection and response circuitry

• hardware-noise random number generation; software postprocessing complies with FIPS 186-2, Appendix 3.1

See Fig. 2.

April 19, 2006 9

Physical
Security
(Sense and
response)

CPU

PPC 405GPr

SDRAM Flash

Custom
comm.

TDES
(DES)

AES SHA−1 MD5

ROM

Flash)
(ROMmed

(R/W)

Clock
Hardware
Random
Number
Generator

Battery−
Backed
RAM

(RSA)

Real−Time

Pubkey

Hardware lock (access control), EEPROM

FPGA
Flash

Secure enclosure

PCI−X
bridge

External interface (PCI−X etc.)

PCI−X base board

hardware
(in FPGA)

Cryptogr. engines (IBM UltraCypher 2)

RS−232 port Ethernet port

Batteries

Card PCI−X interface

Misc. support circuitry

Figure 2: Module hardware architecture.

Physical Security Our device is Level 4-tamper-protected for life, from the moment it leaves the factory vault.
When the internal tamper circuitry that is always active detects physical penetrations, it near-instantly zeroizes in-
ternal secrets by explicitly “crowbarring” memory devices (BBRAM), shorting positive supply voltage with ground.
In addition to cutting power and discharging, special-purpose wiping code purges data buffers in the communica-
tions FPGA, removing memory contents actively at hardware speeds.

Non-zeroized memory devices either discharge and lose contents in a few milliseconds if module power is removed
(SDRAM) or lose their encryption key when BBRAM is zeroized (flash).

The protection circuitry also detects and responds to other environmental attacks, including temperature, voltage,
and radiation.

The module monitors removal from its PCI-X slot. If the module is ever removed from the PCI-X slot hosting it,
the external warning (“intrusion latch” tamper bit) is set to indicate the removal. This bit (event) does not cause
zeroization, but software may choose to respond to it and zeroize module secrets, if necessary.

Table 7 summarizes the effects of tamper types and the recommended application actions.

The module has a dedicated jumper wire to destroy secrets if a security-conscious user does not wish secrets to leave
the site when the module is serviced or replaced. The wire is externally available, and may be severed at all times.

Software Architecture The internal software architecture is divided into four layers.

The foundational two layers—submitted for this validation—control the security and configuration of the device.
These layers come shipped with the device.

• Layer 0: Permanent POST0 (Power-on Self Test) and Miniboot 0 (security bootstrap).

• Layer 1: Rewritable POST1 and Miniboot 1

April 19, 2006 10

Device
driver

Host

network?

Layer 3: Application

Layer 1: IBM POST1, Miniboot 1

Layer 0: IBM POST0, Miniboot 0

Seg3 flash

Seg2 flash

Seg1 flash

Seg0 ROM

Layer 2: System Software/OS (Linux)

Scope of Segment 0−1 validation

Figure 3: Module software architecture.

POST routines perform initial and higher-level testing of card infrastructure. If both POST passes are successful,
card hardware is guaranteed to be functional for basic services. In addition to POST, both Miniboot 0 and 1 perform
detailed, targeted tests of card hardware (cryptographic, transport, and other infrastructure) before relying on their
services.

The upper two layers customize the operation of each individual device. Note that the following layers are not
included in the current FIPS validation.

• Layer 2: System Software. Supervisor-level code.

• Layer 3: Application code.

These two layers are added in the field. The foundational Miniboot software ensures that installation, maintenance,
and update of these layers can proceed safely in a hostile environment.

See Fig. 3.

Memory The internal non-volatile memory components consist of flash, battery-backed static RAM (BBRAM),
and EEPROM. The memory resources are organized according to this layer structure.

• flash is organized into four segments, one for each layer. Each segment contains the program for that layer.
Layer 0 is boot-block ROM. Layer 1 has two copies, to provide full atomicity1 for Miniboot 1 updates.

• BBRAM is organized in to four sections, one for each layer. Each section contains the secrets for that layer.

• EEPROM contains some special status fields.

Hardware Locks Write-access to flash, read/write access to BBRAM, and read/write access to the EEPROM are
guarded by the separate Hardware Lock Microcontroller (HLM).

• The HLM makes many access control decisions based on the value of its internal ratchet. Hardware reset clears
this value to zero; the HLM will advance the ratchet when requested by the main CPU, but the only way to
decrease the current value is a hardware reset—which also forces the CPU to begin executing from known
ROM in known state.

• The HLM also implements, in internal EEPROM, the factory sticky bit (“module has been initialized” bit).
Once this bit is turned off (indicating the device is about to venture from the secure factory into the world),
the HLM will never let it be turned on again.

1By “atomicity,” we mean that a change happens entirely, or not at all—despite failures and interruptions. Since Miniboot 1 supports
in-field firmware repairs, it’s critical that a working copy of Miniboot 1 itself always be present. Our approach eliminates the window of
vulnerability created by the underlying flash memory technology, which requires first erasing a region, then rewriting it.

April 19, 2006 11

(The hardware lock is a critical part of ensuring that the Miniboot security software works despite potentially arbitrary
software in Layers 2 and 3.)

3.2 Included Algorithms

The module includes these NIST-approved algorithms:

• AES

• TDES (double and triple-length keys)

• DES (for compatibility with legacy applications; transitional phase only, until May 19, 2007 (see DES cert. #237))

DES MAC is also used for internal error checking, and this usage will persist beyond 2007 in active cards; see
note below.

• DSS

• SHA-1 (on byte-granular input)

• software DRNG, compliant with FIPS PUB 186-2, (General purpose), Appendix 3.12

Symmetric algorithms support every combination of encryption/decryption and ECB/CBC modes for all possible
key sizes (56 bits for DES; 112 or 168 bits for TDES; 128, 192, or 256 bits for AES). Each available algorithm is
extensively tested during startup and during operations (see Table 3).

In addition to the above, DES MAC is used in a non-cryptographic role as an integrity check of certain internal
structures. Results are used effectively as a 64-bit EDC, protecting against random corruption3. While none of
this MAC calculation is externally observable, use of the DES algorithm for EDC generation is mentioned here for
completeness.

The module also includes these non-approved algorithms:

• MD5 (on byte-granular input)

• RSA (for signing/signature verification)

• ISO9796 padding for public-key signatures

• hardware random number generation

2limited to with fixed-size seeding, with SHA-1-sized (160 bit) input
3these critical structures are not externally observable, but must be protected against failure of storage medium

April 19, 2006 12

Security Requirements Section Level

Cryptographic Module Specification 4

Module Ports and Interfaces 4

Roles, Services, and Authentication 4

Finite State Model 4

Physical Security 4

Software Security 4

Operational Environment N/A

Cryptographic Key Management 4

EMI/EMC 4

Self-Tests 4

Design Assurance 4

Mitigation of Other Attacks N/A

Table 2: Module Security Level Specification.

4 Cryptographic Module Security Level

This module is intended to provide Security Level 4 protection. See Table 2.

April 19, 2006 13

5 Ports and Interfaces

The module communicates with its host through a PCI-X bridge chip, hosted on a PCI-X main board. Three flexcable
connectors connect the secure module to the PCI-X board; these connectors carry the following signals:

• PCI-X bus data/addresses (the module is a PCI-X master)

• PCI-X control signals

• Power, 3.3 V from PCI-X bus

• Power, from batteries mounted on the PCI-X main board

• RS-232 signals

• Ethernet connector signals

• External warning control

A physical security feature, the external warning bit alerts the module if it is removed from its PCI-X host
(page 30).

In the configuration submitted for FIPS validation, the RS-232 port is used for status output during self-tests. It
does not serve as an input.

Apart from self-tests, Segment 0 and 1 code does not drive or use the Ethernet connector, which is mounted on the
PCI-X main board.

6 Self-tests

The 4764 executes the following self-tests upon every startup:

Configuration integrity test verifies firmware flash memory modules and code integrity. The initial and continuous
checks are basically identical, verifying memory checksums when required. Initial checks simply verify integrity
once before data is used for the first time.

Non-modifiable PowerPC code, POST0 and Miniboot0, are checked for integrity through embedded checksums.
In case of checksum mismatch, the code halts itself (POST0) or is not even permitted to execute (Miniboot0,
inhibited by POST0). This code is executed only at startup.

Flash failures are detected and corrected where possible in Segment 1, reverting to the unaffected image if
possible (two copies of Segment 1 code are stored in flash). Segment 2 and 3 code corruptions are detected
but are not correctable, since there is only one copy of each. The same check applies to Segment 2 and 3
secrets. Checksums are checked upon each write operation on a continuous basis.

OS and application segments may implement error checking and recovery for their own persistent data in flash.
The IBM Segment 2 image implements such a flash filesystem, permitting graceful degradation in case of a
flash failure (consistent with well-known failure patterns of flash memory). Such checks are outside the scope
of the Segment 0–1 FIPS validation, but are mentioned here for completeness.

Functional integrity of hardware components is tested through a selected set of known answer tests, covering all
programmable components. The programmable devices verify their own code integrity, external tests verify
proper connectivity.

CPU integrity is verified as part of POST0, before execution continues to Miniboot. These checks verify
fundamental functionality, such as proper execution control, load/store operations, register functions,
integrity of basic logical and arithmetic operations, etc.

Once the CPU tests pass, CPU failures are monitored using other error-checking mechanisms (such as
parity checks of the PCI bus etc.)

April 19, 2006 14

FPGA integrity (communications firmware) is checked by the FPGA itself, through a checksum embedded in
the image, upon loading. If the test fails, the FPGA does not activate, and the card remains inaccessible.

After initialization, FPGA interfaces and internals are covered through parity checks internally, and external
end-to-end checks at higher logical levels.

During FPGA code updates, the new FPGA code is digitally signed as part of the “Segment 1F” (Segment 1
and FPGA) image. The FPGA programming file is modified only after if this signature has been verified.
The bitfile internal checksum is used in addition to initial integrity checking.

Crypto ASIC integrity is verified by comprehensive known-answer tests at startup, covering all possible control
modes. These tests implicitly cover FPGA transport as well, since tests are performed using both available
internal interfaces.

During regular operations, the crypto ASIC covers all traffic through combinations of redundant imple-
mentations, CRCs, and parity checks, in a way specific to each crypto engine. Any failure is indicated as
a hardware failure, to the module CPU and the host.

Tamper code integrity is checked through a checksum embedded in the executable image. This initial test is
performed on the internally stored code executed by the controller, and only failure is explicitly indicated.

HLM controller integrity is verified through its embedded checksum.

Modular math engine self-tests cover all possible control modes, and different sizes of modular arithmetic. The
modular math primitives’ testing covers only modular arithmetic, up to full exponentiation, but not algorithm-
level (i.e., RSA or DSA protocols).

A separate, fully specified known-answer test (KAT) is performed on the DSA implementation, including a
KAT through a predefined “random sequence”. The RSA implementation is tested through dedicated KATs,
in addition to tests of underlying primitives.

Both DSA and RSA tests are performed continuously on operations, checking answer consistency through
performing the operation in the reverse direction, in addition to initial KATs.

Symmetric crypto engines are tested by KATs. All algorithms are subject to KATs in all available modes of
operation, and key sizes, both encryption and decryption. Hash functions are covered by several KATs (Table 3).

Deterministic random number generator (postprocessing software) is covered by a KAT: seeded with a known
value, the “random” output of the generator is compared against the expected value, halting the module in
case of a mismatch. As described before, the DRNG is compliant with FIPS PUB 186-2, Appendix 3.1 (general
purpose), and shares code with the DSA implementation.

In addition to end-to-end DRNG software coverage, POST sanity checks verify that the hardware source is
functional (through statistical tests).

Interactive communications tests verify that the card PCI-X bus is functioning properly.

As part of automatic self-tests, critical functions tests cover the module CPU cache control logic (data and instruc-
tion), processor registers, and instruction set; PCI-X bus transport integrity (including communication mailboxes),
and RAM module integrity.

Apart from interactive communication tests, self-tests run without further user intervention, if code execution is
advanced to Segment 1. Non-interactive Segment 0 tests execute before PCI-X communications are tested.

In addition to startup tests, the module executes conditional data tests on in the following modules:

Pairwise consistency test on RSA and DSA operations

Continuous integrity checks on modular math arithmetic (including RSA and DSA operations), implemented in
hardware

Cross-checks between redundant, independent implementations of TDES (optionally useable as single-DES, with
similar redundancy)

April 19, 2006 15

Algorithm Key size (bits) Mode Operation

Symmetric algorithms

AES 128 ECB encryption, decryption
CBC encryption, decryption

192 ECB encryption, decryption
CBC encryption, decryption

256 ECB encryption, decryption
CBC encryption, decryption

TDES 112 (128) ECB encryption, decryption
CBC encryption, decryption

168 (192) ECB encryption, decryption
CBC encryption, decryption

DES 56 (64) ECB encryption, decryption
CBC encryption, decryption

Public-key algorithms

DSA 1024 N/A signing, signature verification
RSA 512 N/A signing, signature verification

Modular math 1024 N/A (comprehensive test of primitives, up to exponentiation)
2048 N/A (comprehensive test of primitives, up to exponentiation)

Hash algorithms

SHA-1 N/A N/A (hashing)
MD5 N/A N/A (hashing)

Random-number generator

FIPS 186–2, App. 3.1 N/A N/A (generate known “random stream” from a fixed seed)

Table 3: Algorithm known-answer tests

Bi-directional consistency checks on AES encryption and decryption (results are ran through the reverse operation,
verifying that the original input is restored properly).

Parity checks on all other operations performed in the symmetric crypto engine (including hashing), including
partially redundant data flow and control logic.

Continuous test on the utilized random number generator, both hardware and software.

7 Roles and Services

7.1 Roles

Our module has roles for Officer 0, Officer 1, Officer 2, Officer 3 and a generic user.

Each layer in each card either has an external officer who is in charge of it (“owns” it)—or is “unowned.”

This entity does not have to be co-located with the card—in fact, it usually isn’t. (Further, any one officer may be
in charge of layers in many cards.)

We enforce a tree structure on officers:

• All cards will have IBM Officer 0 as their Officer 0.

• All cards will have IBM Officer 1 as their Officer 1.

April 19, 2006 16

Authority over
Layer 1:

Authority over
Layer 2:

Authority over
Layer 3:

IBM Miniboot 1
Officer

IBM OS Officer

OEM1

OEM2

IBM crypto API
officer

University 1 Bank1
Bank2

IBM Miniboot 0
Officer

Authority over
Layer 0:

OEM3

OEM4

Figure 4: Although each device has at most one officer in charge of each layer. The space of all officers over all
devices is organized into a tree. This diagram shows an example hierarchy.

Authority over
Layer 1:

Authority over
Layer 2:

Authority over
Layer 3:

IBM Miniboot 1
Officer

IBM OS Officer

OEM1

OEM2

IBM crypto API
officer

University 1 Bank1
Bank2

IBM Miniboot 0
Officer

Authority over
Layer 0:

OEM3

OEM4

Figure 5: Within this example owner hierarchy, one family of devices might have a Layer 2 controlled by “OEM2”
and a Layer 3 controlled by “OEM 3.”

• If layer n is unowned in a card, then no layer m > n can be owned.

• One owns exactly one layer n (but perhaps in many cards); one’s parent owner (n − 1) must be the same in
all such cards.

Fig. 4 through Fig. 6 sketch examples of this structure.

A card’s Officer 2 is identified by a two-byte OwnerID chosen by its Officer 1. A card’s Officer 3 is identified (among
all other officers sharing the same Officer 2 parent) by a two-byte OwnerID chosen by its Officer 2. (Both OwnerIDs
together identify an Officer 3 among all Officer 3s.)

We additionally have a notion of User: someone who happens to be communicating with the card wherever it is
installed. (See also Section 9).

Specific application programs may define other classes of principals.

Table 4 summarizes what commands are allowed for what roles.

Note that the table does not include certain factory-only commands, which may only be performed by the factory CA.

Each role must authenticate separately for each service request, as part of that request. Per our design goals, Officer
n (for n > 0) can do this remotely.

Fig. 7 illustrates how the commands change initialization of the device; Fig. 8 illustrates how the command change
the configuration of Segment 2 and Segment 3.

April 19, 2006 17

Authority over
Layer 1:

Authority over
Layer 2:

Authority over
Layer 3:

IBM Miniboot 1
Officer

IBM OS Officer

OEM1

OEM2

IBM crypto API
officer

University 1 Bank1
Bank2

OEM4

IBM Miniboot 0
Officer

Authority over
Layer 0:

OEM3

Figure 6: Within this example owner hierarchy, another family of devices might have the IBM OS/Control Program
in Layer 2 and the IBM crypto API in Layer 3.

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

yes

yes

yes

yes

yes

yes

yes

yes

yes

Services

Officer 0

(IBM) (IBM)

Officer 2 Officer 3 User

Roles

Officer 1

No access restrictions

Perform without restrictions, exactly once, in factory

R
un

Continue to Segment 1

Continue to Segment 2

(IBM Initialize)

O
ff

ic
er

s

Establish Officer 2

Establish Officer 3

Surrender Officer 2

Surrender Officer 3

Perform without restrictions, while still in factoryIBM Burn (Segment 1)

Ordinary Burn (Segment) 1

Emergency Burn (Segment) 2

Ordinary Burn (Segment) 3

Emergency Burn (Segment) 3

Ordinary Burn (Segment) 2

C
od

e
M

an
ag

em
en

t

C
om

m
an

ds
Q

ue
ri

es

No access restrictions
Query Status

Query Signed Health

Table 4: Miniboot command/query policy.

April 19, 2006 18

7.2 Operations

Our module provides the following types of services:

• Miniboot queries

• Miniboot commands

Miniboot queries and commands must be presented to the module from its host, when the appropriate half of
Miniboot is executing.

As the name implies, Miniboot runs at boot time. Hardware reset forces the module CPU to begin executing from
a fixed address in Segment 0, which contains POST0 and Miniboot 0 (MB0). If POST0 fails, the device halts. If
POST0 is successful, then Miniboot 0 executes. It listens and responds to zero or more queries, followed by exactly
one command.

If the command is a Continue and Segment 1 is deemed safe, execution proceeds to Segment 1, which contains
POST1 and Miniboot 1 (MB1). If POST1 fails, the device halts. If POST1 is successful, then Miniboot 1 executes.
It listens and responds to zero or more queries, followed by exactly one command. If the command is a Continue and
Segment 2 is deemed safe, execution proceeds to Segment 2.

Halt In many situations, Miniboot will halt, by sending out an explanatory code, and entering a halt/spin state. In
particular, Miniboot will halt upon:

• rejection of any command

• successful completion of any command other than “Continue”

• detection of any error (self-test or command functional error)

• detection of any other condition requiring alteration of configuration

This was a design decision: always halting makes it easier to be sure that precondition checks and clean-up are
applied in a known order. POST (infrastructure) failures are treated similarly to Miniboot, halting the module after
outputting a failure status.

Reset To resume operation, the user must cause another hardware reset. On a hardware level, the device can be
reset by:

• power-cycling the device

• triggering the designated control bit in the Bus Master Control/Status Register accessible from the PCI-X host
(it forces a module reset through the external PCI-X bridge chip).

On a software level, the IBM-supplied host-side device drivers will transparently reset the device (via the “Add-on
Reset” signal) when appropriate:

• When the user “closes” the device after opening it for Miniboot

• When the user “opens” the device for Miniboot, but the device driver detects the device is halted.

• When the user opens the device for ordinary operation, but the host-side driver determines that the device is
not already open. (In this case, the IBM-supplied host-side device drivers will transparently reset the device
and also execute MB0 Continue and MB1 Continue, to try to advance to the Program 2 code.)

April 19, 2006 19

Receipts Upon successful public-key commands, Miniboot 1 provides a signed receipt (to prove to a remote officer
that the command actually took place, on an untampered card). Miniboot 1 also signs its query responses.

7.3 Inbound Authentication

Miniboot authenticates each command request individually.

For N ≥ 1, Miniboot authenticates a command from Officer N by verifying that the public-key signature on the
command came from the entity that is Officer N for that card, and was acting in that capacity when the signature
was produced. This approach enables the officers to be located somewhere other than the devices they control.

In a module configured in FIPS mode, signatures are made with 1024-bit DSA keys. Forging 1024-bit DSA signatures
on segment contents is assumed to be infeasible (NIST, “Digital Signature Standard (DSS)”, FIPS 186–2).

Miniboot authenticates Officer 0 commands (used for emergency repairs when the device is returned to the IBM
factory vault) using secret-key authentication based on TDES keys. Use of any of these commands destroys any
other officer secrets that may remain in the device. (Note that these commands are not available outside the secure
manufacturing facilities, but are sometimes mentioned for completeness.)

The module has a dedicated jumper wire to destroy secrets if a security-conscious user does not wish secrets to leave
the site when the module is serviced or repaired. Removing the jumper wire disconnects the battery path and zeroizes
the module through a hard voltage tamper (p. 30).

7.4 Outbound Authentication

At the last stage of manufacturing, Miniboot on a card generates its first keypair. IBM certifies the public key to
belong to that untampered card with that version of Miniboot. This certificate attests that the entity which knows
the private key matching that public key is that untampered card, with that Miniboot software. The certification
takes place in the secure manufacturing vault.

Each time Miniboot 1 replaces itself, it generates a keypair for its successor and certifies the new public key with its
current private key. This certificate establishes that if one trusted the current installation of Miniboot, then one can
trust the identity of the next one.

Each time the application configuration changes, Miniboot 1 also generates and certifies a keypair for Layer 2.
(Miniboot also zeroizes the old Layer 2 private key, if one exists.) This certification binds that keypair to that
application configuration on that card. (Our intention is that Layer 2 will in turn use this keypair to provide outbound
authentication services to the application.)

This binding, coupled with the trust chain for Miniboot’s own keypair, permits parties to make accurate trust judg-
ments about the entity wielding a private key certified this way.

7.5 CSP

The value of a secure coprocessor lies in its ability to be a trusted platform: “the real thing,doing the right thing.”

Since it is Miniboot and the hardware—the module, as submitted for this validation—that provides this property, the
CSP for Miniboot consist of the various authentication and configuration elements. These fall into two groups.

For Layer 0, which is incapable of asymmetric cryptography, secrets (and CSPs) are related to symmetric keys.
Three “keys” are used to authenticate in Segment 0 operations: “P0” and “P1” are symmetric (TDES) keys used
to authenticate Miniboot 0 and Miniboot 1. These keys are zeroized upon tamper event, inhibiting successful
authentication by a tampered card.

“NZ” is a non-zeroizable key (secret) that could be used during card recovery (if that is ever performed, which is
not the case as of this writing). All Segment 0 symmetric keys are used for authentication. Use of these keys is only

April 19, 2006 20

possible in secure manufacturing facilities, but not in regular operations; they are mentioned here only as reference.
All Segment 0 secrets are internally generated, not exported or imported through the secure boundary, and are not
accessed by field-applicable services.

The Layer 0 state includes the TDES secrets used for secret-key authentication of Officer 0. (Note, however, that if
Officer 0 uses these secrets to potentially affect the configuration of a higher layer, that layer’s secrets are atomically
destroyed. Such factory actions, again, are outside the scope of this document.)

For Layer 1 through Layer 3, the CSP consists of:

• the identity of the officer over this layer

• the state that this program has accumulated in non-volatile BBRAM

• miscellaneous status fields

• Segment 1 has a device private key pair, generated during card initialization.

• Segment 2 code may offer public-key services similar to those of Segment 1. If such code is present, Segment 2
may contain public-key pairs similar to the device key pair (see below)

For each of these segments, segment state is uniquely determined by the set of the above parameters. Officer public
keys are imported to the module. Status fields and segment state are managed by Miniboot, some of them are
returned in the Segment 1 Query.

Officer identity is represented through a public key stored on behalf of the respective officer, as part of CCPs (card
configuration parameters). An officer must be able to demonstrate possession of the corresponding private key by
signing commands. Officer identities may be queried through the Segment 1 status query, which returns the public
key of the officer owning that segment. Officer identities are imported in the “Establish Owner” command of the
corresponding segment.

Layer 1 state/CSPs also include the device private key that provides the foundation of that untampered device’s
outbound authentication ability. This key is also referred to as the Segment 1 or Layer 1 private key in support
documentation. The Layer 1 device key signs Segment 1 queries.

If present, Segment 2/3 state includes Layer 2 private key(s) noted above. These keys share the properties of
Segment 1 keypairs: they are internally generated, are not exportable, but may be queried since they have exportable
public key certificates. These keys may be generated and used through an internal OA interface that mimics the
public-key services of Miniboot 1, if the Segment 2 code supports such interfaces. The default IBM code provides
these interfaces; it supports key generation, certificate export, signing, and verification for a suitable Segment 3
application. These Segment 2/3 capabilities are outside the scope of this FIPS validation, but are mentioned here
for completeness, since they are derived from Segment 1 key objects.

The contents of code are also critical to module security. Segment contents are updated in sync with state and officer
identity. Table 5 summarizes administrator-level actions performed by Segment 0 and 1.

Segment 0 information is only indirectly accessed by field-accessible services. Segment 1–3 secrets, unless described
otherwise in the table, correspond to segment ownership (i.e., to officer public keys). Actions in the table describe
whether a given item is created (C), read (R), written (W), or destroyed (D). Standalone writes imply cooperation
of the segment owner; write and destroy (W/D) operations override the segment owner through of actions of the
underlying segments’ owner.

Notes applicable to the table are the following:

1. The (Segment 3) User is entirely controlled by the Segment 3 officer, and actions of Officer 3 apply to the
User as well. The User is incapable of performing Segment 0–1-level actions herself.

2. Certain Segment 0 actions, which are never performed in the field or Officers 1 to 3, are included in the table
for completeness.

April 19, 2006 21

3. These services affect the corresponding officer’s identity, in the form of their public keys, and the give segments’
state.

4. These services affect the corresponding segment’s content.

5. If Segment 3’s secrets (persistent objects) are labeled to distrust Segment 1–2 configuration changes, these
changes imply a Surrender Segment 3 operation as well.

6. Segments 2, 3, and the User do not exist yet when this factory command is executed.

7. Factory initialization of Segment 1 data includes generation of the device (Layer 1) public key, including its
certificate from the factory CA.

8. Segment 1 Queries are always signed by the Segment 1 device key.

9. Segment 2 public-key items, which depend on Segment 2 support, are outside the scope of this validation and
are not represented in the table.

10. All secrets are destroyed by a tamper response event, which does not have a corresponding Miniboot command.

The available functions affect the following CSPs and CCPs:

Query Status Read status, including layer owner identities and card infrastructure configuration

Query Signed Health Read status, including owner identities and public keys

Continue to Segment 1 read/check Segment 1 code state

Continue to Segment 2 read/check Segment 2 code state

IBM Initialize Generate device (Layer 1) keypair; write new certificate; clear Layer 2 and 3 parameters and BBRAM

Establish Officer 2 Write Layer 2 owner ID

Establish Officer 3 Write Layer 3 owner ID

Surrender Officer 2 Clear Layer 2 and 3 parameters and BBRAM

Surrender Officer 3 Clear Layer 3 parameters and BBRAM

IBM Burn Load Layer 1 (owner) public key; clear Layer 2 and 3 parameters and BBRAM

Ordinary Burn 1 Load Layer 1 (owner) public key; optionally clear Layer 2 and 3 parameters and BBRAM, as
defined by Segment 2/3 persistent object definitions

Ordinary Burn 2 optionally clear Layer 3 parameters and BBRAM; write Segment 2 code

Emergency Burn 2 clear Layer 2 BBRAM and Layer 3 parameters; write Segment 2 code

Ordinary Burn 3 write Segment 3 code

Emergency Burn 3 write Segment 3 code; clear Layer 3 BBRAM

7.6 Queries and Commands

Table 4 summarizes the queries and commands that Miniboot offers.

April 19, 2006 22

Service Role CSP (CCP) access
Officer User

0 1 2 3 Note 1 (p. 20)

Queries

Query Status R (Segment 1 and card infrastructure
state)

Query Signed Health R R R (R) (returns Segment 1–3 state, including
ownership; signed with Segment 1 key,
Note 8)

Execution control

Continue to Segment 1 R (Check: does Segment 1 state permit
execution?)

Continue to Segment 2 R (Check: does Segment 2 state permit
execution?)

Officers

(IBM Initialize) C C N/A N/A N/A create: Segment 0 CSPs Note 2,

Note 6 (create: device key pair)
Establish Officer 2 W (Segment 2 owner id) Note 3

Establish Officer 3 W (Segment 3 owner id) Note 3

Surrender Officer 2 D (Segment 2 owner id) Note 3

Surrender Officer 3 D (D) (Segment 3 owner id) Note 3

Segment contents

(IBM Burn) R/W C N/A N/A N/A Read/write Segment 0 CSPs Note 2,

Note 6 (initialize: Segment 1 code)
Ordinary Burn (Segment) 1 W (write: Segment 1F code) Note 4, Note 5

Ordinary Burn (Segment) 2 W (write: Segment 2 code) Note 4, Note 5

Emergency Burn (Segment) 2 W/D (write: Segment 2 code) Note 4, Note 5

Ordinary Burn (Segment) 3 W (W) (write: Segment 3 code) Note 4

Emergency Burn (Segment) 3 W/D (write: Segment 3 code) Note 4

Table 5: Roles, services, and CSP access

April 19, 2006 23

Miniboot 0 Queries Miniboot 0 provides one “field” query:

• Query: Status. This query returns general status information about the card software versions, card identifica-
tion.

Miniboot 0 Commands Miniboot 0 provides these commands:

• IBM Burn. Install a new Program 1 and public key for Officer 1, while still in the factory but after it’s no
longer convenient to change the flash chips.

Note that the IBM Burn command is not accessible in the lifetime of the module once it left the factory. It is
included for reference only.

• Continue. Continue execution to Segment 1, if possible.

In an end-user environment, Miniboot 0 can issue only “Continue” commands to advance execution to Segment 1.

Miniboot 1 Queries Miniboot 1 provides these queries:

• Query: Get Health. The requester selects and sends a nonce. The card returns a signed response containing
general health information:

– the same data as Miniboot 0’s Status

– identifying information about code and owners in reliable segments

– the nonce (so the requester can know this response is fresh)

• Query: Certlist. The card returns a signed response containing the certificate chain taking the card’s current
public key back to the IBM Factory CA (Certificate Authority).

Miniboot 1 Commands Miniboot 1 provides these commands:

• IBM Initialize. While still in the factory: generate a device keypair and SKA secrets, have these certified by the
Factory CA, and turn the “module is initialized” (factory “sticky bit”) off forever. (This command is rejected
if sticky bit is already off.)

Note that obviously the IBM Initialize command is not accessible in the lifetime of the module once it left the
factory. It is included for reference only.

• Establish Owner n, for n > 1. Give an UNOWNED layer n to someone.

Ownership may be established only if the given segment is not claimed by any owner (is “UNOWNED” in status
queries). The owners’ supplied public key is registered to the segment ownership, segment state is upgraded
to “OWNED BUT UNRELIABLE”, indicating that the current code may not be executed, even if ownership is
properly initialized. Miniboot will not execute code from such a segment.

Once the new owner loads code to the segment, its state is upgraded to “RUNNABLE”, indicating that the
segment owner identity is known and the segment code has been written after verifying its signature. Once
these two conditions are met, execution may pass to this segment.

• Surrender Owner n, for n > 1. Give up ownership of Layer n.

A prerequisite of surrendering ownership is that the segment is owned (since ownership of it is required to sign
the command). The segment ownership indication is removed (segment reverts to “UNOWNED”), segment
contents are flagged as not runnable. Just as with a segment before its contents are written first, Miniboot
will not pass execution to such segments.

April 19, 2006 24

Never left
the factory

Zeroized

(Left factory,
tamper response
fired)

Bad Seg1

(left factory,
Seg1 became
damaged...
but Seg0
still has secrets)

Uncertified

(Seg1 OK,
but does not
possess
certified keypair)

Fully Initialized

IBM Initialize

Field
Certify

Emergency
Burn 1

Revive

Tamper response
Various failures

Never left
the factory,
but Seg1
is damaged IBM Burn

(Seg1 is runnable)

Various failures

Figure 7: A sketch of the configurations and main flows for device initialization and Segment 1.

• Ordinary Burn n. Ordinary update of Program n and public key for Officer n, in an untampered card. (In
preliminary documentation, this was called “Remote Burn.” The older term may still persist in a few places.)

• Emergency Burn n for n > 1. Install Program n and public key for Officer n, in an untampered card—but
without using current contents of Segment n.

• Continue. Continue execution to Segment 2, if possible.

7.7 Overall Security Goals

The overall goal of this policy is to ensure that the following properties hold:

• Safe Execution. Miniboot will not execute or pass control to code that depends on hardware that has failed.

• Access to Secrets. Program n should have neither read nor write access to the secrets belonging to Program
k < n.

• Safe Zeroization. In case of attack or failure, the device will destroy the secrets belonging to Program n
before an adversary can access the memory where those secrets are stored.

Besides hardware tamper, such attacks may include (for k < n) loading of a Program k that Officer n does
not trust, or fraudulent behavior by some Officer k.

• Control of Software. Should layer n later change in any way other than demotion due to failure, some current
Officer k (for k < n) is responsible for that action (using his current authentication keys).

• Outbound Authentication. On-board applications can authenticate themselves to anyone. Suppose Alice
knows a Layer 2 private key certified back, through Miniboot on an untampered card, to IBM. if Bob trusts
the entities named in this certification chain, then Bob can conclude that Alice is the application entity named
in that last certificate.

Module security supports the Officer and User roles as described in Table 6. The security assumption is that the
identity-authenticating mechanisms are as secure as the underlying cryptographic functions. Officer 0 is represented
by a TDES key. Officers 1 through 3 are identified through digital signatures. In FIPS mode, authentication mode
must use the DSA (as defined in FIPS 186-2) as the digital signature algorithm. The cryptographic strength of
1024-bit DSA keys and SHA-1 (80 bits), is significantly over the minimum 10−6 unauthorized success probability.

April 19, 2006 25

Unowned
Owned, but
Unreliable Runnable Reliable, but

unrunnable

Emergency
Burn

(Owned)

(Reliable)

Establish
Owner

Surrender

Various failures

Various failures

Various
failures

Figure 8: A sketch of the configurations and main flows for Segment n, for n > 1. Note that, in addition to the
transitions shown, one can also “Burn” or “Emergency Burn” from any of the reliable states into Runnable.

Role Type of Authentication Authentication Data Cryptographic Strength

Officer 0 Identity TDES key 80 bits (TDES, as used)

Officer 1 Identity Digital signature 80 bits (1024-bit DSA with SHA-1)
Officer 2 Identity Digital signature 80 bits (1024-bit DSA with SHA-1)
Officer 3 Identity Digital signature 80 bits (1024-bit DSA with SHA-1)

User (Authenticated by Officer 3)

Table 6: Officer Roles and Authentication Mechanisms

In addition to officers, a Generic User role is supported by the module. The actual external user would probably
interface with a Segment 2 or 3 application, but that detail is outside the scope of this security policy. The User role
is incapable of altering Segment 0–2 CSPs and CCPs, since it is related to applications loaded to Segment 3.

April 19, 2006 26

Application Developer

Factory

Hostile Field

Software

Operating System Developer

Application

OS

Bootstrap

Figure 9: The module supports three layers of rewriteable software, from potentially mutually suspicious developers,
configurable in a hostile field location, with neither trusted courier nor on-site security officer.

8 Security Rules

The module shall maintain the state of an officer’s program only while the module continuously maintains an envi-
ronment for that program that is verifiably trusted by that officer.

The module shall not require officers to trust each other (or trust the hardware manufacturer) any more than is
necessary.

The module shall support public-key authentication, wherever possible.

The module shall permit officers to retain their data across uploads, where possible and reasonable.

The module shall enable all three rewritable software layers to be installed and maintained in a hostile field, without
the use of trusted couriers or on-site security officers. See Fig. 9.

April 19, 2006 27

9 FIPS-Related Definitions

This FIPS validation addresses only the hardware, and Layer 0 and Layer 1 of the software—the generic firmware if
the device, as shipped.

For the purposes of this FIPS 140-2 validation, Officer 0 relates to the “Cryptographic Officer 0” role. (This officer
operates only in the secure factory, and most of its operations are therefore out of the scope of this policy.)

The upgradeable FPGA programming file, which was not a feature of the original 1.16 firmware or any 4758 modules,
represents a part of Layer 1 for programming and configuration purposes. Since FPGA code is always kept synchro-
nized with Segment 1 contents, the FPGA programming file is treated as an integral part of Segment 1 configuration,
and not separately represented. If the distinction is necessary, such as in source commentary, the combined segment
is referred to as “Segment 1F”, or “S1F”.

Layer 2 and 3 are excluded for this FIPS validation effort. In certain cases, Segment 2 and 3 contents are explicitly
mentioned in the context of Segment 0 and 1, where absolutely necessary.

The “User” role can access a subset of Segment 3 capabilities, and can’t directly influence the configuration of the
module. User actions are therefore discussed in the context of Segment 3 officer actions. In most environments, ex-
ternal users would interact with interfaces provided by the User role, through applications loaded under the Segment 3
officer’s control.

April 19, 2006 28

10 Module Configuration for FIPS 140-2 Compliance

10.1 Miniboot

To be a FIPS-compliant module, a 4764–001 device with 16R0911 hardware must be loaded with Version 1.16 of
Miniboot 1. With production POST 1, v2.9, the validated Miniboot version resides in the card if its Segment 1 hash
is 2a4e 5289 49b2 66e7 5a6e 27b9.

The above Miniboot version must be loaded to a card with a security module with part number 16R0911.

To be a FIPS-compliant module, a 4764–001 device with 12R6536 hardware must be loaded with Version 1.25 of
Miniboot 1. With production POST 1, v2.15, the validated Miniboot version resides in the card if its Segment 1F
hash is e5c8 e392 e980 37a3 98a5 5e6e b09a e317 9f9e 91c4.

The above Miniboot version must be loaded to a card with a security module with part number 12R6536.

To be a FIPS-compliant module, a 4764–001 device with 12R8241 hardware must be loaded with Version 1.25 of
Miniboot 1. With production POST 1, v2.15, the validated Miniboot version resides in the card if its Segment 1F
hash is e5c8 e392 e980 37a3 98a5 5e6e b09a e317 9f9e 91c4.

The above Miniboot version must be loaded to a card with a security module with part number 12R8241.

To be a FIPS-compliant module, 4764–001 device with 12R8561 hardware must be loaded with Version 1.25 of
Miniboot 1. With production POST 1, v2.15, the validated Miniboot version resides in the card if its Segment 1F
hash is e5c8 e392 e980 37a3 98a5 5e6e b09a e317 9f9e 91c4.

The above Miniboot version must be loaded to a card with a security module with part number 12R8561.

Note: the above version numbers are identical to those of the FIPS configuration of the previous release. These
releases share software components on different hardware.

The host driver should provide a method to query the Segment 1 hash; this detail is platform-dependent.

To then operate in a FIPS-compliant mode, each officer must choose DSS as the digital signature method for their
public keys. Host drivers interacting with Miniboot 1 should retain module configuration and make it available to
user applications on request.

For reference, the segment signature type is part of the seg ids field of the Segment 1 query return structure
(mbid t) as documented in the host API.

10.2 Layers 2 and 3

The Miniboot software currently submitted for validation only controls the configuration of the device. Miniboot
responds to queries and

• either responds to a configuration-changing command (then halts),

• or proceeds to invoke the program in Layer 2 (if it’s there)—and goes away forever (until the next boot)

Because Miniboot advances the trust ratchet before passing control to Layer 2, the CSP4 that Miniboot depends on
(in protected flash and the Miniboot region of lockable BBRAM) cannot be compromised by Layer 2 or Layer 3.

As noted earlier, no matter what is loaded into Layer 2 and Layer 3, our validation establishes:

4a term used in the FIPS 140-2 Derived Test Requirements.

April 19, 2006 29

• that Miniboot will still run securely the next time the device is reset;

• that if an entity uses a private key which Miniboot certified to belong to an untampered card in a specified
application configuration, either that entity is that application configuration on that card, or that application
configuration on that card gave away its key.

In order to actually do something, the device must be loaded with Layer 2 (and, depending on the design of that
program, Layer 3 as well).

Hence, to operate after bootstrap as a FIPS-compliant module, layers 2 and 3 must also be FIPS validated. The
level of validation of the module in operation, as a whole, will be limited by the level of validation of these layers.

However, if both Layer 2 and Layer 3 are FIPS-validated, and neither permits ANY uncertified code to run in the
device, then the operating system/Common Criteria requirements of FIPS 140-2 will not apply to the OS/control
program residing in Layer 2.

10.3 Usage of non-Approved algorithms or modes of operation

The UltraCypher 2 ASIC used in the module provides hardware acceleration for non-Approved security algorithms
(i.e., MD5 hashing), and software in Layer 2 or 3 may support other non-Approved algorithms. Even if not utilized
by Segment 0 and 1 code as part of this validation, Segment 2 and 3 code mode may use MD5 facilities. The
Segment 2 and 3 application is required to unambiguously indicate when it implements non-approved algorithms or
modes of operation. This Segment 2/3 requirement is outside the validation requirements of Segments 0 and 1, but
it is mentioned here for completeness.

As part of non-approved algorithms, the “fastpath”, a host interface providing modular exponentiation support to
a PCI-X host without involving the module CPU, is not enabled in FIPS-compliant mode. Segment 0 and 1 under
validation does not enable fastpath facilities; the indication requirement for Segments 2 and 3 is applicable.5

10.4 Determining Mode of Operation

The “Signed Health Query” to Miniboot 1 will return identities and revisions of each layer’s programs, and the
signature algorithm chosen by each officer. In addition to segment identification and revision number, each program
layer is identified through its contents’ SHA-1 hash (see p. 28, “Miniboot”, for the Segment 1 hash being validated).
If Segment 1–3 contents correspond to validated configurations, and their signature algorithm is DSS, Segment 0
and 1 are in their FIPS-compliant mode.

For reference, the segment signature type is part of the seg ids field of the Segment 1 query return structure (mbid t)
as documented in the host API. The procedure to access the Signed Health Query results is platform-dependent. On
IBM server platforms, drivers provide functions to display segment configurations.

Host drivers are assumed to store query results and make them available to higher-level (application) users. User
applications/administrators should be able to unambiguously verify the configuration of module segments. Host
driver implementation, while outside the scope of this specification, should provide a convenient way of querying card
configuration, since most likely user application won’t interface to Miniboot 1 directly.

5The fastpath status indicator bit is bit “HMM AE” of the HCSR command status register, as described in the host API.

April 19, 2006 30

11 Module Officer/User Guidance

Primarily providing advice for security officers and users, this section also includes operational recommendations
that may be useful during operating the module. These operating recommendations are relevant also to system
administrators, who may not be directly involved with officer/user actions.

Since the module is shipped in an initialized state, and it may not be repaired in the field, administrator-level
recommendations only cover regular operations.

11.1 Physical Security Inspection/Testing Recommendations

The module physical security mechanisms are mainly automatic, but application software (both module and host)
may react differently to different tamper types, based on the requirements and assumptions of the card applica-
tion. Intrusions, which may destroy card secrets through an internal, independent action, is observable both as an
officer/user and system administration event.

System administrators may notice tamper detection through unusual module startup, such as a card failing to ini-
tialize. The details of such administrator-level logging are platform-dependent. It is recommended to investigate the
tamper event type reported by the module, possibly cross-checking the tamper event with other logs.

The module may not be recovered after a tamper event. This includes internally stored secrets, which are destroyed
after a hard tamper.

Hard tamper events are caused by very high over voltage, temperature out of reasonable operational range, radi-
ation, or a physical tamper (penetration of the tamper-detection matrix). Reaction is instantaneous. Module
memory-type devices (BBRAM, communication FIFOs) are zeroized. Module secrets, for practical purposes, are
immediately destroyed. The module becomes permanently inoperative: the boot sequence does not successfully
terminate without secrets in BBRAM.

Hard tamper events may only be detected after the fact by the host application. As the module is held in reset
after a hard tamper, module secrets are lost. There is no further action possible on such a card, as it is held
in reset by the internal circuitry, until the batteries are removed. Removing and restoring batteries does not
restore functionality, as the module does not boot without its secrets.

Hard tamper events (practically, the type of tamper) are latched in PCI-X registers.

Soft tamper events are caused by moderate over voltage or temperature moderately out of operational specifica-
tions. Reaction is instantaneous. The module is held under reset while the soft tamper conditions persist, but
secrets are not destroyed.

Soft tamper events may be detected after the fact by the host application. The module recovers from a reset
following a soft tamper. Soft tamper events (type of tamper) are latched in PCI-X registers.

External warning indicates that the module has been removed from the PCI-X slot housing it, even if no tamper
condition has been detected. (Note that this is not a physical intrusion event, just a logical one.) The
corresponding tamper bit is immediately set, but it may only be inspected when the module is powered up for
the next time. Module secrets are not destroyed by Miniboot.

Based on the nature of the host/module application, application code may elect to zeroize module secrets if it
is restarted with the external warning latch indicating previous removal from the host system.

The external warning latch state is persistent, and may be cleared through software means (by card code).

Low battery warning signals a condition where the batteries have been drained to a level that may endanger safe
operations if the module is not powered externally. (A field kit is available for battery replacement.) This bit
does not indicate an intrusion event.

The low battery warning is not latched; it monitors battery voltage continuously.

April 19, 2006 31

Physical Sec. Mechanism Severity/Effect Recommended Frequency of Inspection/Test Test Guidance

Hard tamper Zeroization N/A (automatic) N/A
Soft tamper Module reset N/A (automatic) N/A

External warning Warning module start appl. discretion
Low battery Warning as frequent as feasible (replace ASAP)

Table 7: Physical Security: tamper types and recommended actions

11.2 Module initialization and delivery

The module is initialized at the factory. Internal controls guarantee that each one may be initialized only once.

Once a module has been delivered, and put into production, its configuration should be logged, to verify that it is
fully operational and is loaded by an approved code level. (The application-specific details of this verification are
available outside this policy.)

11.3 Miscellaneous

Note that the module is more sensitive to environmental conditions than most general-purpose devices. Environmental
requirements, specified in a platform-dependent manner, are safely within the range encountered a well-managed and
reliable enterprise computing environment.

Security officers and users should verify the identity and configuration of the module before utilizing its services. If
the card identity (device key or serial number) does not match security officer/user expectations, applications should
investigate the discrepancy and react in a prudent fashion. Module code configuration, returned by a Segment 1
query for all segments, may be verified by all officers and users.

(See also verification of module FIPS mode.)

April 19, 2006 32

12 Glossary

CCPs are card configuration parameters, configuration state descriptors that are critical, nonsecret properties of a
module. Such critical information includes segment code and segment ownership (i.e., officer public keys).
These parameters are not secret, but their consistency is critical for proper card operations, therefore they must
be enumerated when describing module configuration.

EDC Error Detection Code.

Device keypair is a device-specific public-key keypair generated and retained by Segment 1. It is non-exportable,
traceable back to the IBM factory CA through a certificate chain, and may be used by external parties to verify
the identity of a module, through outbound authentication (“OA”).

HLM Hardware Lock Microcontroller, a dedicated microcontroller assisting the module CPU with access control and
management of persistent storage.

KAT Known Answer Test

Miniboot software component of module firmware.

Miniboot functionality, together with POST, roughly corresponds to those of a system BIOS in PCs (with
obvious additions to cover cryptographic functionality and module-specific hardware).

OA Outbound Authentication, infrastructure capable of authenticating (signing) content by a card-resident, non-
exportable private key.

External parties, including other modules, can verify that signed content has been generated by untampered
module firmware (Segment 1).

POST Power-On Self-Test, infrastructure tests resident in ROM and flash.

RAS Abbreviation of Reliability, Availability, Serviceability

RoHS Restriction of Hazardous Substances Directive of the European Union (2003). Regulates use of certain
hazardous materials in electronic equipment, including lead, mercury, and chromium.

Segment 1F Segment 1, i.e., the rewriteable part of card firmware, including the FPGA programming file. The term
is used only when the FPGA bitfile is explicitly involved in Segment 1 operations.

Logically, Segment 1F is not different from “Segment 1”, as they are equivalent regarding card security and
behavior. (The FPGA bitfile protection is common with the protection mechanisms around Segment 1.)

The distinction is made to highlight differences between the original 4764–001 (which can not update its
FPGA flash before firmware 1.25) and later releases.

S1F Abbreviation of Segment 1F

Policy information: $Revision: 1.92 $, last archived: $Date: 2006/04/20 03:48:37 $, check-in by user tvi (Tamas Visegrady).

	Background of Family
	Overview
	Algorithm support
	Security level
	Ports and interfaces
	Self-tests
	Roles and services
	Authentication
	Critical Security Parameters
	Queries and commands
	Security goals
	FIPS 140-2 compliant configuration
	Determining mode of operation
	Officer/User guidance
	Physical security
	Initialization and delivery
	Miscellaneous

